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To describe our Universe, we want a unified framework comprising: 

‣ Standard model of particle physics 

‣ Mechanism for expanding Universe



The string landscape
• String theory’s paradigm to get real-world physics: compactifications 
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• To explain our 4d EFT, start from a 10d theory
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[Ashok, Douglas ’04]

 solutions10500

• The higher-dimensional theory is very rich: 
 CY geometry can be very intricate 
 10d field content on top 

 induce fluxes on the CY

→
→

→

 surely one can get 
any EFT from those!
→
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 EFT breaks down!→

EFT p.o.v.: more and more 
particles below the cutoff
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Challenge 2: de Sitter in string theory

• Cosmological constant = minimum of a 
scalar potential,  

• Positive, zero, negative   dS, Mink., AdS. 

• Very difficult to get positive CC.

V(ϕi)

Λ →

Weakly-coupled 
regime

Need higher-order 
corrections

[Dine, Seiberg ’85]

Candidate mechanism: 

KKLT scenario 
[Kachru, Kallosh, Linde, Trivedi ’03]



Aim of this talk: 
Study KKLT through holography



Outline

1. Explain what I mean by « studying KKLT through holography » 

2. More classic « stringy » seminar



Pause for questions (1)
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What are fluxes?
• Electron  electric field   field 

strength  (dynamical part) 

• Electron in   flux lines  Gauss’ law 
gives electric charge 

• Electron on compact space  
impossible! 
• But  allowed by topology.

→ Aμ →
Fμν

ℝ3 → →

→

Fμν = n ∈ ℤ

In string theory: string, D -branes     . 

 have a constant part allowed by topology of compact space  

 « Fluxes » 

p → B2, Cp+1 → H3, Fp+2

H3, Fp+2

→



From 10d to scalar potential
• How do we get the scalar potential from string 

theory? 

• EFT describing low-energy dynamics: 4d  
SUSY 

𝒩 = 1

S𝒩=1 = ∫ d4x −g [ R
2

− gij̄∂ψ i∂ψ j̄ + V (ψ i) + . . . ]



From 10d to scalar potential
• How do we get the scalar potential from string 

theory? 

• EFT describing low-energy dynamics: 4d  
SUSY 

 

•  depends on 10d string-theory data 

𝒩 = 1

S𝒩=1 = ∫ d4x −g [ R
2

− gij̄∂ψ i∂ψ j̄ + V (ψ i) + . . . ]
V

V = eK [gij̄ DiW Dj̄W − 3 |W |2 ]
WGVW = ∫CY3

G3 ∧ Ω3

Fluxes on CY CY geometry
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The KKLT scenario

Study this step through holography and domain walls

Two-step procedure:

1. Stabilise CY moduli with 
fluxes 

& non-perturbative 
corrections 

 SUSY, scale-separated AdS →
Λ < 0

2. Raise the C.C. to a positive 
value: 

add  branes and break 
SUSY a tiny bit 

 dS vacuum with broken SUSY 

D3

→
Λ > 0



Pause for questions (2)



Domain walls as intersecting branes
• Can realise BH and DW solutions from intersecting BPS branes:

corresponding parameters in the gauge theories on the boundary.

2 General Setup

In this section, we setup general formalism, which can be applied to any types of inter-
secting branes in any dimensions, for obtaining the explicit expressions for harmonic
functions.

In the BPS case, supergravity solutions for partially localized intersecting branes can
be obtained with the same metric Ansätze and the same harmonic superposition rules
as the delocalized cases. So, in the following, we shall assume the same forms of the
metric Ansätze (which differ for different types of constituent branes and therefore will
be given in sections 3 and 4 case by case) as the delocalized intersecting BPS branes.
Schematically, in general the intersecting brane configuration is given by the following
table. (This table is given also for the purpose of fixing the notations for the spacetime
coordinates, which we shall follow in the following sections.)

t w⃗ x⃗ y⃗ z⃗

brane 1 • • •
brane 2 • • •

Here, t is the time coordinate, w⃗ is the possible overall longitudinal coordinate, x⃗ =
(x1, . . . , xp) [y⃗ = (y1, . . . , yq)] is the relative transverse coordinate for the brane 1
[the brane 2], and z⃗ = (z1, . . . , zr) is the overall transverse coordinate. Generally,
for any type of intersecting brane 1 (with the harmonic function H1 = H1(x⃗, z⃗)) and
brane 2 (with the harmonic function H2 = H2(y⃗, z⃗)) in any dimensions with the above
configuration, the harmonic functions satisfy the following coupled partial differential
equations 5 [5, 6, 17, 12, 7]:

∂2
z⃗H1 +H2∂

2
x⃗H1 = 0,

∂2
z⃗H2 +H1∂

2
y⃗H2 = 0, (1)

along with the constraint
∂x⃗H1∂y⃗H2 = 0. (2)

5More precisely, the coordinates z⃗, x⃗ and y⃗ are the coordinates in which constituent branes are
localized. Namely, when some of the coordinates are delocalized due to, for example, dimensional
reduction, the harmonic functions H1 and H2 still satisfy the same coupled differential equations (1)
but just do not depend on the delocalized coordinates. As will be seen in the following, in some cases
it is necessary to delocalize the configuration along some of the overall transverse directions for the
purpose of localizing one brane to the other. In such cases, z⃗ is the coordinate in the part of the
overall transverse space where the intersecting branes are localized.

4

overall transverse 
directions

common 
directions
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delocalise

« Harmonic function rule » ⇒
Sugra solution: 

BH or DW[Papadopoulos, Townsend ’96]
[Tseytlin ’96]

[Gauntlett, Kastor, Traschen ’96]
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Sugra solution: 

  « near-horizon »AdS × S × X

Black hole 
if dim( ⃗z) ≥ 2

Domain wall 
if  (no )dim( ⃗z) = 1 S

Domain walls as intersecting branes
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Table 1: Local picture of brane configuration of the MSW black hole. The symbol �
denotes the wrapping directions of the brane.
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The zoom-in of the branes at the triple intersections

4d « MSW » black hole:  

M5 brane wrapping  and  S1
y L4

⊂ CY3

[Maldacena, Strominger, Witten ’97]

Fluxes/branes for black holes
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• BH entropy:
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4d « MSW » black hole:  

M5 brane wrapping  and  S1
y L4

⊂ CY3

[Maldacena, Strominger, Witten ’97]

11d: competition 
between branes

S = 2π
q
6

cL

11d: triple intersections 
cL = Cijkpipjpk + c2,i pi

Number d.o.f.  AdS  
radius in 4d units

↔ 2

pi

q

Fluxes/branes for black holes

11d: stabilisation 
from fluxes on CY
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• Complex-structure deformations 

(3-cycles) stabilised by fluxes,  

• Kähler moduli (2- and 4-cycles) 
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WGVW = ∫X3

G3 ∧ Ω3 G3 = F3 − τH3
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𝒜k(zi, G3) e−2πkα Tα

need to be ≪ 1
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corrections
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Wn.p. = ∑
k
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• Get C.C. in terms of stabilised 
Kähler modulus σ0

ΛAdS = −3 (eK |W |2 )
DaW=0

= −
a2𝒜2e−2aσ0

6σ0
< 0

Idea: trade  fluxes with 
D5/NS5 branes on dual cycles

(F3, H3)
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3d version of KKLT
• Same story in dual version of 

KKLT in M theory on CY4

W = ∫X4

Ω4 ∧ G4 + ∑
k

𝒜k(zi, G4) e−2πkαTα

X4 = (X3 × T2)/ℤ2

• Same kind of superpotential, 
controlled by self-dual flux G4

τ

G4 = F3 ∧ a + H3 ∧ b
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W = ∫X4

Ω4 ∧ G4 + ∑
k

𝒜k(zi, G4) e−2πkαTα

X4 = (X3 × T2)/ℤ2

• Same kind of superpotential, 
controlled by self-dual flux G4

1
l2
AdS3

= − 4eK |W |2

DaW=0
≪ 1• Get scale-separated AdS3

Idea: trade  flux for M5 
branes on dual cycle CY .

G4
L4 ⊂ 4

τ

G4 = F3 ∧ a + H3 ∧ b
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Part 1 
Anatomy of a Fall?



The Fall of KKLT?

Claim: cannot construct AdS  (with  stabilised) with . 3 X4 |Λ | ≪ 1
[S. Lüst, Vafa, Wiesner, Xu '22]
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The Fall of KKLT?
• On CY  : trade the  flux for M5 branes on orthogonal cycle . 

• ,  so locally looks like
4 X4 G4 L4 ⊂ X4

G4 = ⋆ G4

• 3d: KKLT AdS  as sourced by a domain wall3

At , reach KKLT AdSz = + ∞ 3

ds2 = e2D(z)(−dt2 + dy2) + dz2

dD
dz

= − ζ |Z |

tension of the wall

dϕa

dz
= 2ζgab̄∂b̄ |Z |

|Z |2 ∼ Δ ⟨V⟩



Domain-wall holography
Susy AdS  from M-theory 
on  in the presence of 

self-dual  flux

3
X4

G4

DW: M5 brane on special 
Lagrangian L4

[S. Lüst, Vafa, Wiesner, Xu '22]
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X4
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DW: M5 brane on special 
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No  flux on G4 X4

(1+1)d QFT 

UV

IR

[S. Lüst, Vafa, Wiesner, Xu '22]



The holographic dual
At , the IR central charge 
measures the radius of the AdS : 

z = + ∞
3

cIR =
3
2

lAdS ∼
1
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The holographic dual
At , the IR central charge 
measures the radius of the AdS : 

z = + ∞
3

cIR =
3
2

lAdS ∼
1

|Λ |

At , the UV central charge measures 
the number of d.o.f. on the M5 branes.

z = 0
-theorem for 2d CFT:  

 

 lower bound on 

c
cUV ≥ cIR

⇒ |Λ |

[S. Lüst, Vafa, Wiesner, Xu '22]



• Count possible deformations of special Lagrangian  in   L4 X4

cUV = (1 +
1
2 ) L4 ⋅ L4 + (4 +

4
2 ) b1(L4)

[S. Lüst, Vafa, Wiesner, Xu '22]

M5 self-intersections 
in  X4

 independent M5-strips 
in 

b1
X4

The estimated UV CFT
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• Count possible deformations of special Lagrangian  in   L4 X4

cUV = (1 +
1
2 ) L4 ⋅ L4 + (4 +

4
2 ) b1(L4)

[S. Lüst, Vafa, Wiesner, Xu '22]

M5 self-intersections 
in  X4

 independent M5-strips 
in 

b1
X4

∼ (Nflux)2
𝒪[(Nflux)2]Scale  :L4 → Nflux L4

The estimated UV CFT

cIR ≤ cUV

|ΛAdS | ≥

 Not enough d.o.f. on the 
brane to get a sufficiently 

small C.C.!

⇒∼ (Nflux)2

𝒪 [ 1
(Nflux)2 ]

Need it 
exponentially 

small



Pause for questions (4)



Part 2 
Anatomy of a Flaw



A flaw in the argument?
• They take a DW sourcing the KKLT AdS, and the UV d.o.f. are the 

deformations of the SLag . 

• What if there are hidden d.o.f.?  
‣ At the M5-M5 brane intersections there could have much more d.o.f.  
‣ (D1-D5 system: central charge is  instead of .) 
‣ Here: potentially d.o.f. from M2 branes ending on M5 branes

L4

N1N5 N1 + N5



A flaw in the argument?
• They take a DW sourcing the KKLT AdS, and the UV d.o.f. are the 

deformations of the SLag . 

• What if there are hidden d.o.f.?  
‣ At the M5-M5 brane intersections there could have much more d.o.f.  
‣ (D1-D5 system: central charge is  instead of .) 
‣ Here: potentially d.o.f. from M2 branes ending on M5 branes

L4

N1N5 N1 + N5

 Need to evaluate the radius of the AdS corresponding to the 
brane intersection!

→



• Brane configuration: M5(1234,y) — M5(5678,y) — M2(yz). 

Taking into account the M2 branes for cUV

M5yx234

3

M5y5678

M5yx234
M2yz

3

M2y

M5y5678

0 R3 S1
y 1 2 3 4 5 6

M5 � r=0• � � � � �
M5 � r=0• � � � � �
M5 � r=0• � � � � �
P � r=0• !

Table 1: Local picture of brane configuration of the MSW black hole. The symbol �
denotes the wrapping directions of the brane.

0 y z 1 2 3 4 5 6 7 8

M5 � � z=0• � � � �
M5 � � z=0• � � � �
M2 � �

z<0
�

Table 2: Brane configuration of the KKLT domain wall. The symbol � denotes the
wrapping directions of the brane.
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• Brane configuration: M5(1234,y) — M5(5678,y) — M2(yz). 

Taking into account the M2 branes for cUV

• Put M2 charge ending on M5 branes (cross shape). 
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• Take near-horizon limit             central charge⇝
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Branes at M5 self-intersections
• There is a sugra solution 

corresponding to the smeared M5-M5-
M2.

where r is the radius in the (x3, x4, x5, x6) space, and r is the one in the (x7, x8, x9, x10)
space. The function controlling the M2-brane charges, HT , has to satisfy the di↵erential
equation (2.3) in [14]:

⇣
H

(1)
F (x0)@2

x +H
(2)
F (x)@2

x0

⌘
HT (x, x

0) = 0 . (5.3) diff_eq_on_HT

In [14], the authors provide with a solution of (5.3):

HT = ... (5.4)

This equation corresponds to M2 smeared along..., see Table 4.

y z (r,⌦(1)
3 ) (r0,⌦(2)

3 )

M51 ⌦ ⇠ ⌦
r0=0
•

M52 ⌦ ⇠
r=0
• ⌦

M21 ⌦ ⌦ ⇠
r0=0
•

M22 ⌦ ⌦
r=0
• ⇠

Table 4: Smeared version of the M5-M5-M2 intersection, considered in [14].
htab:M5-M5-M2_smearedi

However, one can find a solution to (5.3) where the M2 branes can be localised. The
Laplacian operators, @2

x and @
2
x0 , can be written in spherical coordinates; we assume that

HT does not have any angular dependence: �x = 1
r3@r (r

3
@r·), �x0 = 1

r03@r
0 (r03@r0 ·). Using

that
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◆
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2
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, (5.5)

we deduce that if Q(1)
F = Q

(2)
F (condition that we will justify in the next sections), the

function

HT =
QM2

(r2 + r02)3
⌘

QM2

R6
(5.6) sol_M2_real_charges

is a solution to the di↵erential equation (5.3). The solution 5.6 corresponds to a M2 source
with real M2-brane charges (see Table 5), contrary to that of [14] (see Table 4).
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M51 ⌦ ⇠ ⌦
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•
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•

Table 5: The M5-M5-M2 intersection, with the M2 branes localised at r = 0 and r
0 = 0.
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leading term, but the number of degrees of freedom from the brane system defining the
black hole cannot exceed what is imposed by the black-hole entropy. Therefore, this is
how our strategy imposes an upper bound on the IR central charge of the domain-wall
CFT, thus constraining the value of the cosmological constant of the AdS space sourced
by the domain wall at z ! 1.

Therefore, in order to constrain the DGKT central charge with this strategy, one has
to find a domain-wall configuration such that there is at least 2 spatial dimensions where
no brane is wrapping.

In [10,11], there is a domain wall system with triple-intersecting D4 branes wrapping
orthogonal 2-cycles in T

6
/Z2

3. Can we understand these three classes of D4 branes, with
wrapping number (N1, N2, N3) to be a single D4 brane of length N1N2N3 wrapping a
single 2-cycle? [YL: In which case the orthogonal 4 dimensions are not wrapped by any
brane and could be decompactified to make the black-hole configuration.]

5 M2 branes at M5 self-intersections

The M5(y1234) and M5(y6789) intersections should not involve more moduli for the
M2(yz) strips. A heuristic argument is the following. Take, locally, a pair of M5(y1234)
– say one lies at z = 0, the other one at at z = 2. And then a third M5(y6789) brane
at z = 1, orthogonal to the first two. In principle the strip between the the first two M5
branes can split into two strips at the intersection with the third M5 brane. But those
cannot move in the 6789 space. So in the end there is not more moduli due to the presence
of the third M5 brane.

The more supersymmetry one breaks, the more degeneracy (and entropy, when it
applies) one gets. Adding M5(y6789) does not break more supersymmetries to the
M5(y1234)-M2(yz) system. So that’s another way to understand why adding M5(y6789)
branes do not increase the degeneracy.

We can also determine the central charge of such a M2-M5-M5 system by going to
the near-horizon limit. The supergravity solution of the M2-M5-M5 configuration can be
found in [12–14]:

ds
2 =H

�2/3
T

⇣
H

(1)
F H

(2)
F

⌘�1/3 �
�dt

2 + dx
2
1

�
+H

�2/3
T

⇣
H

(1)
F H

(2)
F

⌘2/3

dx
2
2

+H
1/3
T

⇣
H

(1)
F

⌘�1/3 ⇣
H

(2)
F

⌘2/3 �
dr

2 + r
2
d⌦2

(1)

�

+H
1/3
T

⇣
H

(1)
F

⌘2/3 ⇣
H

(2)
F

⌘�1/3 �
dr

02 + r
02
d⌦2

(2)

�
. (5.1)

In conformity with the notations of [14], the harmonic functions of the M5-brane charges
are written as

H
(1)
F = 1 +

Q
1
F

r02
, H

(2)
F = 1 +

Q
2
F

r2
(5.2)
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• Metric Ansatz:

• (Localised) M5 harmonic functions:

• M2-charge function:
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applies) one gets. Adding M5(y6789) does not break more supersymmetries to the
M5(y1234)-M2(yz) system. So that’s another way to understand why adding M5(y6789)
branes do not increase the degeneracy.

We can also determine the central charge of such a M2-M5-M5 system by going to
the near-horizon limit. The supergravity solution of the M2-M5-M5 configuration can be
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same near-horizon geometry can be found in [19].

2.1 M-theory case

Consider the configuration

M51 1 3 4 5 6

M52 1 7 8 9 10

M2 1 2

The explicit solution belonging to this configuration is given by [20, 21]

ds2 = (HT )
1
3 (H(1)

F H(2)
F )

2
3{(HT H(1)

F H(2)
F )−1(−dt2 + dx2

1)

+ (HT )−1dx2
2 + (H(1)

F )−1(dx2
3 + · · ·+ dx2

6) + (H(2)
F )−1(dx2

7 + · · ·+ dx2
10)} , (2.1)

F012I = −∂I(HT )−1 , F2m′n′p′ = ϵm′n′p′q′∂q′H
(1)
F , F2mnp = ϵmnpq∂qH

(2)
F ,

where I runs over all m ∈ {3, 4, 5, 6} and m′ ∈ {7, 8, 9, 10}. H(1)
F (x′) and H(2)

F (x) are

harmonic functions in the relative transverse directions,

H(1)
F = 1 +

Q(1)
F

r′2
, H(2)

F = 1 +
Q(2)

F

r2
, (2.2)

where r2 = x2
3 + · · · + x2

6, r′2 = x2
7 + · · · + x2

10 and Q(i)
F = N (i)

F l2p, i = 1, 2. N (i)
F is equal

(up to a numerical constant) to the number of coincident fivebranes. HT (x, x′) satisfies

[20, 22]
(
H(1)

F (x′)∂2
x + H(2)

F (x)∂2
x′

)
HT (x, x′) = 0 . (2.3)

This equation can be solved by

HT = (1 +
Q(1)

T

r′2
)(1 +

Q(2)
T

r2
) (2.4)

The charges Q(i)
T are equal to N (i)

T l2p, where the quantities N (1)
T and N (2)

T are membrane

densities in (x3, x4, x5, x6) and (x7, x8, x9, x10), respectively. Since there are two harmonic

functions associated with the membrane one may interpret the solution as an overlap

of two M2-M5 systems. In the near horizon limit the solution will only depend on the

product N (1)
T N (2)

T which we will denote by NT .

We now consider the low energy limit, in which we keep the masses of stretched

membranes and the lengths in the x2 direction fixed in Planck units (this means that we

keep fixed the string coupling constant in the corresponding type IIA configuration)

lp → 0, U =
r2

l3p
= fixed, U ′ =

r′2

l3p
= fixed. (2.5)

6
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The near-horizon limit

AdS3 × S3 × S3 × T2

(t, u, y) (z, λ)Ω(1)
3Ω(2)

3

[de Boer, Pasquinucci, Skenderis ’99]
• Near-horizon limit:

where r is the radius in the (x3, x4, x5, x6) space, and r is the one in the (x7, x8, x9, x10)
space. The function controlling the M2-brane charges, HT , has to satisfy the di↵erential
equation (2.3) in [14]:

⇣
H

(1)
F (x0)@2

x +H
(2)
F (x)@2

x0

⌘
HT (x, x

0) = 0 . (5.3) diff_eq_on_HT

In [14], the authors provide with a solution of (5.3):

HT = ... (5.4)

This equation corresponds to M2 smeared along..., see Table 4.

y z (r,⌦(1)
3 ) (r0,⌦(2)

3 )

M51 ⌦ ⇠ ⌦
r0=0
•

M52 ⌦ ⇠
r=0
• ⌦

M21 ⌦ ⌦ ⇠
r0=0
•

M22 ⌦ ⌦
r=0
• ⇠

Table 4: Smeared version of the M5-M5-M2 intersection, considered in [14].
htab:M5-M5-M2_smearedi

However, one can find a solution to (5.3) where the M2 branes can be localised. The
Laplacian operators, @2

x and @
2
x0 , can be written in spherical coordinates; we assume that

HT does not have any angular dependence: �x = 1
r3@r (r

3
@r·), �x0 = 1

r03@r
0 (r03@r0 ·). Using

that

�x

✓
1

(r2 + r02)3

◆
= 24

r
2
� r

02

(r2 + r02)5
, (5.5)

we deduce that if Q(1)
F = Q

(2)
F (condition that we will justify in the next sections), the

function

HT =
QM2

(r2 + r02)3
⌘

QM2

R6
(5.6) sol_M2_real_charges

is a solution to the di↵erential equation (5.3). The solution 5.6 corresponds to a M2 source
with real M2-brane charges (see Table 5), contrary to that of [14] (see Table 4).

y z (r,⌦(1)
3 ) (r0,⌦(2)

3 )

M51 ⌦ ⇠ ⌦
r0=0
•

M52 ⌦ ⇠
r=0
• ⌦

M21 ⌦ ⌦
r=0
•

r0=0
•

M22 ⌦ ⌦
r=0
•

r0=0
•

Table 5: The M5-M5-M2 intersection, with the M2 branes localised at r = 0 and r
0 = 0.

htab:M5-M5-M2_M2localisedi

8

     ,  r, r′ → u ∝ rr′ λ ≈ log r − log r′ 



The near-horizon limit

AdS3 × S3 × S3 × T2

(t, u, y) (z, λ)Ω(1)
3Ω(2)
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[de Boer, Pasquinucci, Skenderis ’99]
• Near-horizon limit:

• Central charge:  c ∝ N2N5 ∝ (Nflux)3

where r is the radius in the (x3, x4, x5, x6) space, and r is the one in the (x7, x8, x9, x10)
space. The function controlling the M2-brane charges, HT , has to satisfy the di↵erential
equation (2.3) in [14]:
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In [14], the authors provide with a solution of (5.3):
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This equation corresponds to M2 smeared along..., see Table 4.
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Table 4: Smeared version of the M5-M5-M2 intersection, considered in [14].
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However, one can find a solution to (5.3) where the M2 branes can be localised. The
Laplacian operators, @2

x and @
2
x0 , can be written in spherical coordinates; we assume that
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is a solution to the di↵erential equation (5.3). The solution 5.6 corresponds to a M2 source
with real M2-brane charges (see Table 5), contrary to that of [14] (see Table 4).
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The near-horizon limit
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(t, u, y) (z, λ)Ω(1)
3Ω(2)
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[de Boer, Pasquinucci, Skenderis ’99]
• Near-horizon limit:

• Central charge:  c ∝ N2N5 ∝ (Nflux)3

where r is the radius in the (x3, x4, x5, x6) space, and r is the one in the (x7, x8, x9, x10)
space. The function controlling the M2-brane charges, HT , has to satisfy the di↵erential
equation (2.3) in [14]:
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In [14], the authors provide with a solution of (5.3):

HT = ... (5.4)

This equation corresponds to M2 smeared along..., see Table 4.
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However, one can find a solution to (5.3) where the M2 branes can be localised. The
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x and @
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is a solution to the di↵erential equation (5.3). The solution 5.6 corresponds to a M2 source
with real M2-brane charges (see Table 5), contrary to that of [14] (see Table 4).
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Table 5: The M5-M5-M2 intersection, with the M2 branes localised at r = 0 and r
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[S. Lüst, Vafa, Wiesner, Xu '22]

 Weaker bound on  due 
to the M2 branes!

→ Λ
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Pause for questions (5)



Part 3 
Anatomy of a Flow



The most « entropic » domain wall
• Previous section: compare AdS  with AdS , but smeared the M5 branes. 

• Configuration with the most d.o.f.? 

• Squeeze all branes at the same place  brane interaction enhanced

3 3

→
M5yx234

M2y

mots
3

D5
y1 y2123

13y - yz

g,

450y

M5yx234

M2y
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450y



The most « entropic » domain wall
• Previous section: compare AdS  with AdS , but smeared the M5 branes. 

• Configuration with the most d.o.f.? 

• Squeeze all branes at the same place  brane interaction enhanced

3 3
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These configurations contain the maximum 
number of d.o.f. one can get from the branes



• How to get an AdS capturing the d.o.f. of 
intersection? 

• Locally, M2 ending on M5-M5. 

• The M2 pulls on the worldvolume of the M5 

Radius of a warped ?AdS3
M5yx234

M2y

mots
3

D5
y1 y2123

13y - yz

g,

450y
[Bena, Hampton, Houppe, YL, Toulikas ’22]

[Eckardt, YL ’23]



• How to get an AdS capturing the d.o.f. of 
intersection? 

• Locally, M2 ending on M5-M5. 

• The M2 pulls on the worldvolume of the M5 

Radius of a warped ?AdS3
M5yx234

M2y
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3

D5
y1 y2123

13y - yz

g,

450y

• Sugra solution, with infrared limit:  
AdS3 × S3 × S3 ×w W2

[Lunin ’07] [Bachas, D’Hoker, Estes, Krym ’13]
[Bena, Houppe, Toulikas, Warner ’23]

[Bena, Hampton, Houppe, YL, Toulikas ’22]
[Eckardt, YL ’23]

• Reading off central charge is a mess



Warped  in type IIBAdS4

• The solution is an AdS4 × S2 × S2 ×w Σ2

• Sugra solution for D5-NS5-D3 intersection is known. [D’Hoker, Estes, Gutperle ’07]

[Aharony, Berdichevsky, Berkooz, Shamir ’11]

[Assel, Bachas, Estes, Gomis ’11]
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Warped  in type IIBAdS4

• The solution is an AdS  

• Compute of AdS radius in 4d Planck 
units:  

4 × S2 × S2 ×w Σ2

lAdS

GN
∼ (Nflux)4 log(Nflux)

• Sugra solution for D5-NS5-D3 intersection is known. [D’Hoker, Estes, Gutperle ’07]

[Aharony, Berdichevsky, Berkooz, Shamir ’11]

[Assel, Bachas, Estes, Gomis ’11]

M5yx234

M2y

mots
3

D5
y1 y2123

13y - yz

g,

450y[Assel, Estes, Yamazaki ’12]
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(a) (b)

FIG. 2. Left: BCFT quiver (9) for N5 = 8, K = 1, with NS5-branes as filled ellipses, D3-branes as horizontal
lines, and D5-branes as vertical lines. Right: BCFT quiver (15) for N5 = 4, K = 3.

2.1. BCFTs

The form of the field theories associated with the brane configuration in fig. 1 depends on
whether N5 > 2K or N5 < 2K. For N5 > 2K the net number of D3-branes ending on the D5-
branes from the right in fig. 1 is negative, while for N5 < 2K it is positive. To make the field
theory manifest in the brane construction for N5 > 2K, one separates the NS5-branes and uses
Hanany-Witten transitions [27] to bring the D5-branes to a location where they have no D3-branes
ending on them. The resulting form of the brane configuration is illustrated in fig. 2(a). The
D3-brane segments suspended between the NS5-branes realize a 3d quiver gauge theory, in which
the D5-branes represent 3d flavors. This 3d gauge theory is a UV description for the 3d SCFT to
which 4d N = 4 SYM is coupled at the boundary of the BCFT geometry. The combined 3d/4d
quiver gauge theory for N5 > 2K is

U(R)� U(2R)� . . .�U(R2)� U(R2 � S)� . . .� U(2N5K + S)� \U(2N5K)

| (1)

[N5]

where

R =
N5

2
+K , S =

N5

2
�K . (2)

The node with a hat in (1) represents 4d N = 4 SYM on a half space. The remaining nodes are
the 3d quiver gauge theory description for the 3d SCFT on the defect. At the boundary of the 4d
half space the 4d N = 4 SYM fields are coupled to the 3d quiver. Along the first ellipsis in (1) the
rank increases in steps of R from left to right, along the second it decreases in steps of S.

For N5 < 2K, some of the semi-infinite D3-branes end on the D5-branes, as illustrated in
fig. 2(b). The combined 3d/4d quiver gauge theory for N5 < 2K is

U(R)� U(2R)� . . .� U((N5 � 1)R)� \U(2N5K) (3)

In this case, at the boundary of the 4d half space only a subset of the 4d N = 4 SYM fields
couple to the 3d quiver, while the others satisfy Nahm pole boundary conditions imposed by the
D5-branes (more details can be found in [29] or the review in [30, sec. 2.2]).

Generally speaking, the 3d quiver “grows” relative to the 4d ambient CFT with increasing
N5/K – the number of gauge nodes increases with N5 and so do their ranks. There is a qualitative
transition at N5 = 2K: For the small-N5 quivers (3) the ranks of the 3d gauge nodes simply
decrease, starting from a number which is smaller than the rank of the 4d N = 4 SYM node on
the right end towards zero on the left end of the 3d quiver. For the large-N5 quivers (1), on the

D5

D3

NS5
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• Study DW configurations for KKLT 
‣ Assume scale-separated KKLT AdS exists 
‣ Realise it as being sourced by a DW made of M5 or 

D5/NS5 branes 
‣ -theorem puts lower bound on  

• Previously proposed to count the UV central charge —  
possible deformation of the SLag wrapped by the M5 
branes 

• Flaw in the argument: could have hidden d.o.f.

c |Λ |

cIR ≤ cUV ∼ (Nflux)2

[S. Lüst, Vafa, Wiesner, Xu '22]
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• They correspond to Hanany-Witten-like d.o.f. at 
the five-brane intersections.  

• Cannot have more d.o.f. than that, since we 
compute the radius of the UV AdS. 

• Therefore there is not enough d.o.f. to get the 
AdS with  in the KKLT scenario.|Λ | ≪ 1

F ∼ (Nflux)4 log(Nflux)

Thank you!

• The intuition was right, there can be indeed 
more d.o.f. than originally thought


