Holography for KKLT: Anatomy of a Flow

Yixuan Li

Theoretical Elementary Particle Physics Group Seminar, Nagoya

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Work to appear with I. Bena and S. Lüst

July 2nd, 2024

MPI Munich

- To describe our Universe, we want a unified framework comprising: ‣ Standard model of particle physics
	- ‣ Mechanism for expanding Universe

The string landscape

• String theory's paradigm to get real-world physics: compactifications

 $\mathcal{M}_4 \times X_6$

• To explain our 4d EFT, start from a 10d theory

The string landscape

- String theory's paradigm to get real-world physics: compactifications
- To explain our 4d EFT, start from a 10d theory
- The higher-dimensional theory is very rich: → CY geometry can be very intricate → 10d field content on top \rightarrow induce fluxes on the CY

 $\mathscr{M}_4 \times X_6$

 10^{500} solutions

[Ashok, Douglas '04]

 \rightarrow surely one can get any EFT from those!

• The space of 4d EFT compatible with quantum gravity is very constrained → « Swampland programme »

- The space of 4d EFT compatible with quantum gravity is very constrained « Swampland programme » →
- Scale separation (size compact dimensions VS non-compact ones) not easily achieved
	- String theory examples $(AdS_5 \times S^3,...)$ $AdS_5 \times S^5$

- The space of 4d EFT compatible with quantum gravity is very constrained « Swampland programme » →
- Scale separation (size compact dimensions VS non-compact ones) not easily achieved
	- String theory examples $(AdS_5 \times S^3,...)$ $AdS_5 \times S^5$

- The space of 4d EFT compatible with quantum gravity is very constrained « Swampland programme » →
- Scale separation (size compact dimensions VS non-compact ones) not easily achieved
	- String theory examples $(AdS_5 \times S^3,...)$ $AdS_5 \times S^5$

Conjecture: No scale-separated AdS vacua [D. Lüst, Palti, Vafa '19]

As $\Lambda \rightarrow 0$, \exists tower of states s.t. $m \sim |\Lambda|^{\alpha}$

- The space of 4d EFT compatible with quantum gravity is very constrained « Swampland programme » →
- Scale separation (size compact dimensions VS non-compact ones) not easily achieved
	- String theory examples $(AdS_5 \times S^3,...)$ $AdS_5 \times S^5$

 \rightarrow EFT breaks down! EFT p.o.v.: more and more particles below the cutoff

Conjecture: No scale-separated AdS vacua [D. Lüst, Palti, Vafa '19]

As $\Lambda \rightarrow 0$, \exists tower of states s.t. $m \sim |\Lambda|^{\alpha}$

Challenge 2: de Sitter in string theory

- Cosmological constant = minimum of a scalar potential, *V*(*ϕⁱ*)
- Positive, zero, negative $\Lambda \rightarrow dS$, Mink., AdS.

Challenge 2: de Sitter in string theory

- Cosmological constant $=$ minimum of a scalar potential, *V*(*ϕⁱ*)
- Positive, zero, negative $\Lambda \rightarrow dS$, Mink., AdS.
- Very difficult to get positive CC.

Challenge 2: de Sitter in string theory

- Cosmological constant $=$ minimum of a scalar potential, *V*(*ϕⁱ*)
- Positive, zero, negative $\Lambda \rightarrow dS$, Mink., AdS.
- Very difficult to get positive CC.

Candidate mechanism:

KKLT scenario

[Kachru, Kallosh, Linde, Trivedi '03]

Aim of this talk: Study KKLT through holography

1. Explain what I mean by « studying KKLT through holography »

2. More classic « stringy » seminar

Pause for questions (1)

What are fluxes?

- Electron \rightarrow electric field $A_\mu \rightarrow$ field strength $F_{\mu\nu}$ (dynamical part)
- Electron in $\mathbb{R}^3 \to \text{flux lines} \to \text{Gauss}'$ law gives electric charge

What are fluxes?

- Electron \rightarrow electric field $A_\mu \rightarrow$ field strength $F_{\mu\nu}$ (dynamical part)
- Electron in $\mathbb{R}^3 \to \text{flux lines} \to \text{Gauss}'$ law gives electric charge
- Electron on compact space \rightarrow impossible!
	- But $F_{\mu\nu} = n \in \mathbb{Z}$ allowed by topology.

What are fluxes?

- Electron \rightarrow electric field $A_\mu \rightarrow$ field strength $F_{\mu\nu}$ (dynamical part)
- Electron in $\mathbb{R}^3 \to \text{flux lines} \to \text{Gauss}'$ law gives electric charge
- Electron on compact space \rightarrow impossible!
	- But $F_{\mu\nu} = n \in \mathbb{Z}$ allowed by topology.

In string theory: string, Dp-branes \rightarrow $B_2, C_{p+1} \rightarrow H_3, F_{p+2}$.

 H_3, F_{p+2} have a constant part allowed by topology of compact space

 \rightarrow « Fluxes »

From 10d to scalar potential

- How do we get the scalar potential from string theory?
- EFT describing low-energy dynamics: 4d $\mathcal{N}=1$ SUSY

$$
S_{\mathcal{N}=1} = \int d^4x \sqrt{-g} \left[\frac{R}{2} - g_{i\overline{j}} \partial \psi^i \partial \overline{\psi}^{\overline{j}} + V(\psi^i) + \dots \right]
$$

 \mathbf{l}

From 10d to scalar potential

- How do we get the scalar potential from string theory?
- EFT describing low-energy dynamics: 4d $\mathcal{N}=1$ SUSY

$$
S_{\mathcal{N}=1} = \int d^4x \sqrt{-g} \left[\frac{R}{2} - g_{i\bar{j}} \partial \psi^i \partial \overline{\psi}^{\bar{j}} + V(\psi^i) + \dots \right]
$$

• *V* depends on 10d string-theory data $V = e^{K} \left[g^{i\bar{j}} D_{i} W \overline{D}_{\bar{j}} \overline{W} - 3 |W| \right]$ 2 $\begin{array}{c} \hline \end{array}$

$$
W_{\text{GVW}} = \int_{CY_3} G_3 \wedge \Omega_3
$$

Fluxes on CY CY geometry

 \mathbf{l}

1. Stabilise CY moduli with fluxes & non-perturbative corrections → SUSY, scale-separated AdS $\Lambda < 0$

Two-step procedure:

 6 - - 8 - - $-$ - $+$ \in

1. Stabilise CY moduli with fluxes & non-perturbative corrections → SUSY, scale-separated AdS $\Lambda < 0$

Two-step procedure:

1. Stabilise CY moduli with fluxes & non-perturbative corrections → SUSY, scale-separated AdS $\Lambda < 0$

Two-step procedure:

« Use solution of challenge 1 to solve challenge 2 »

Two-step procedure:

Study this step through holography and domain walls

Pause for questions (2)

• Can realise BH and DW solutions from *intersecting BPS branes*: • Can realise BH and DW solutions from *intersecting BPS branes*:

Domain walls as intersecting branes Schematically, in general the intersecting brane configuration is given by the following

z = common discoverall transverse common discoverally transverse common discoverally $\mathcal{L}^{\text{free}}$ for any type of intersection branched branched branched branched branched brane 1 (with the harmonic function H overall transverse directions

 $\mathcal{L} = \{ \mathcal{L} \mid \mathcal{L} \in \mathcal{L} \}$ is the possible overall longitudinal coordinate, $\mathcal{L} = \{ \mathcal{L} \mid \mathcal{L} \in \mathcal{L} \}$ $y_{1,1}$ is the relative transverse coordinate for the relative transverse coordinate for the brane 1 α

common directions

• Can realise BH and DW solutions from *intersecting BPS branes*: • Can realise BH and DW solutions from *intersecting BPS branes*:

Domain walls as intersecting branes Schematically, in general the intersecting brane configuration is given by the following

 $[1]$ for any type of intersection branch the harmonic function H or H or H [Papadopoulos, Townsend '96]

 d delocalise delocalise

 y_{11} is the relative transverse coordinate for the relations of the relations of the brane 1 x difficulture contains $x \mapsto \begin{pmatrix} 2 & 3 & 5 \ 0 & 2 & 5 \end{pmatrix}$ x, ⃗ [⇒] Sugra solution:

[Gauntlett, Kastor, Traschen '96] [Gauntlett, Kastor, Traschen '96]

« Harmonic function rule »

[Tseytlin '96]

Domain walls as intersecting branes

Here, t is the time coordinate, w

Suara solution: Sugra solution:

 \overline{X} and \overline{Y} is the relative transverse coordinate for the brane 1 is the bra $\frac{1}{2}$ AdS × *S* × *X* « near-horizon »

The zoom-in of the branes at the triple intersections
The zoom-in of the branes at the triple intersections

4d « MSW » black hole: [Maldacena, Strominger, Witten '97]

M5 brane wrapping S_y^1 and $\frac{1}{y}$ and L_4 $\mathsf{C}\mathbf{C}\mathbf{Y}_3$

Fluxes/branes for black holes

• Moduli / CY shape are stabilised near horizon: denotes the wrapping directions of the brane.

$$
t^i=p^i\sqrt{\frac{q}{\frac{1}{6}C_{ijk}p^ip^jp^k}}\qquad \mathcal{V}=\sqrt{\frac{q^3}{\frac{1}{6}C_{ijk}p^ip^jp^k}}
$$

The zoom-in of the branes at the triple intersections
The zoom-in of the branes at the triple intersections

4d « MSW » black hole: [Maldacena, Strominger, Witten '97]

M5 brane wrapping S_y^1 and $\frac{1}{y}$ and L_4 $\mathsf{C}\mathbf{C}\mathbf{Y}_3$

11d: competition between branes

11d: stabilisation from fluxes on CY

Fluxes/branes for black holes

• Moduli / CY shape are stabilised near horizon: denotes the wrapping directions of the brane.

$$
t^i=p^i\sqrt{\frac{q}{\frac{1}{6}C_{ijk}p^ip^jp^k}}
$$

11d: triple intersections $c_L = C_{ijk} p^i p^j p^k + c_{2,i} p^i$

Number d.o.f. \leftrightarrow AdS₂ radius in 4d units

The zoom-in of the branes at the triple intersections
The zoom-in of the branes at the triple intersections

4d « MSW » black hole: [Maldacena, Strominger, Witten '97]

M5 brane wrapping S_y^1 and $\frac{1}{y}$ and L_4 $\mathsf{C} \mathbf{C} \mathbf{Y}_3$

11d: competition between branes

Fluxes/branes for black holes

11d: stabilisation from fluxes on CY

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

$$
W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3
$$

$$
W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}
$$

need to be $\ll 1$

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections
- Get C.C. in terms of stabilised Kähler modulus σ_0

$$
\Rightarrow |\Lambda_{AdS}| \ll 1
$$

$$
W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3
$$

$$
W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}
$$

needed to be $\ll 1$

$$
\Lambda_{\text{AdS}} = -3 \left(e^K |W|^2 \right) \Big|_{D_a W = 0} = -\frac{a^2 \mathcal{A}^2 e^{-2a\sigma_0}}{6\sigma_0} <
$$

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections
- Get C.C. in terms of stabilised Kähler modulus σ_0

$$
\Rightarrow |\Lambda_{AdS}| \ll 1
$$

ldea: trade (F_3, H_3) fluxes with D5/NS5 branes on dual cycles

$$
W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3
$$

$$
W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}
$$

needed to be $\ll 1$

$$
\Lambda_{\text{AdS}} = -3 \left(e^K |W|^2 \right) \Big|_{D_a W = 0} = -\frac{a^2 \mathcal{A}^2 e^{-2a\sigma_0}}{6\sigma_0} <
$$

Pause for questions (3)

3d version of KKLT

• Same story in dual version of KKLT in M theory on CY_4

 $X_4 = (X_3 \times T^2)/\mathbb{Z}_2$

$$
W = \int_{X_4} \Omega_4 \wedge G_4 + \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_4) e^{-2\pi k^{\alpha}T_{\alpha}}
$$

$$
G_4 = F_3 \wedge a + H_3 \wedge b
$$

• Same kind of superpotential, controlled by self-dual flux *G*⁴ *τ*

3d version of KKLT

• Same story in dual version of KKLT in M theory on CY_4

 $X_4 = (X_3 \times T^2)/\mathbb{Z}_2$

• Same kind of superpotential, controlled by self-dual flux *G*⁴

• Get scale-separated AdS₃

Idea: trade G_4 flux for M5 **branes** on dual cycle L_4 ⊂ CY₄.

$$
\frac{1}{l_{\text{AdS}_3}^2} = -4e^K |W|^2 \Big|_{D_a W = 0} \ll 1
$$

τ

 $W = \int_{X_4} \Omega_4 \wedge G_4 + \sum_{\mathbf{k}}$ **k** $k^{(z^i, G_4)} e^{-2\pi k^{\alpha}T_{\alpha}}$ 1 $G_4 = F_3 \wedge a + H_3 \wedge b$

10-15 MINS

Part 1 *Anatomy of a Fall?*

The Fall of KKLT?

Claim: cannot construct AdS_3 (with X_4 stabilised) with $|\Lambda| \ll 1$.

[S. Lüst, Vafa, Wiesner, Xu '22]

The Fall of KKLT?

- On CY₄ X_4 : trade the G_4 flux for M5 branes on orthogonal cycle $L_4 \subset X_4$.
- $G_4 = \star G_4$, so locally looks like

The Fall of KKLT?

- On CY₄ X_4 : trade the G_4 flux for M5 branes on orthogonal cycle $L_4 \subset X_4$.
- $G_4 = \star G_4$, so locally looks like

• 3d: KKLT AdS₃ as sourced by a domain wall

$$
ds^{2} = e^{2D(z)}(-dt^{2} + dy^{2}) + dz^{2}
$$

$$
\frac{dD}{dz} = -\zeta |Z| \frac{d\phi^{a}}{dz} = 2\zeta g^{a\bar{b}}\partial_{\bar{b}} |Z|
$$

tension of the wall

At $z = +\infty$, reach KKLT AdS₃

|*Z*| 2 ∼ Δ ⟨*V*⟩

Domain-wall holography

Space-time filling M2-branes

$$
N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0
$$

Domain wall M5-brane on SLag4 dual to G_4

 $z = 0$

DW: M5 brane on special Lagrangian L_4

[S. Lüst, Vafa, Wiesner, Xu '22]

 $N_{M2} = 0$, $\frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$

Susy AdS₃ from M-theory on X_4 in the presence of self-dual G_4 flux

Susy AdS vacuum $DW = 0 \quad Z$

Domain-wall holography

Space-time filling M2-branes

$$
N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0
$$

Domain wall M5-brane on SLag4 dual to G_4

 $z = 0$

Susy AdS_3 from M-theory on X_4 in the presence of self-dual G_4 flux 3

Susy AdS vacuum
 $DW = 0$ Z

 χ (X_4) 24 $=$ N_{M2} + 1 $\frac{1}{2}$ $G_4 \wedge G_4$

DW: M5 brane on special Lagrangian L_4

[S. Lüst, Vafa, Wiesner, Xu '22]

 $N_{M2} = 0$, $\frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$

Domain-wall holography

Space-time filling M2-branes

$$
N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0
$$

Do M5-brane o

DW: M5 brane on special Lagrangian L_4

$N_{M2}=0$, $\frac{1}{2}\int G_4 \wedge G_4 = \frac{\chi}{24}$	Susy AdS ₃ from M-theory on X_4 in the presence of self-dual G_4 flux
$z=0$	Susy AdS vacuum
$z=0$	$DW=0$ z
$W=0$ z	

[S. Lüst, Vafa, Wiesner, Xu '22]

The holographic dual [S. Lüst, Vafa, Wiesner, Xu '22] $\forall A t z = +\infty$, the IR central charge $N_{M2} = 0$, $\frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$ measures the radius of the AdS_3 : 3 1 **Susy AdS vacuum** $c_{\rm IR} =$ l_{AdS} ∼ $DW = 0 \quad Z$ 2 |Λ|

M5-brane on SLag4 dual to G_4

M5-brane on SLag4 dual to G_4

At $z = 0$, the UV central charge measures the number of d.o.f. on the M5 branes.

At $z = 0$, the UV central charge measures the number of d.o.f. on the M5 branes.

$$
c_{\rm UV} = \left(1 + \frac{1}{2}\right)L
$$

 $\frac{1}{2}$) $L_4 \cdot L_4 + (4 +$ 4 $\frac{1}{2}$) $b_1(L_4)$ M5 self-intersections b_1 independent M5-strips in X_4 in X_4

[S. Lüst, Vafa, Wiesner, Xu '22]

The estimated UV CFT

• Count possible deformations of special Lagrangian L_4 in X_4

M5 self-intersections in X_4 $\sim (N_{\text{flux}})^2$

 $Scale L_4 \rightarrow N_{\text{flux}} L_4$:

$$
c_{\rm UV} = \left(1 + \frac{1}{2}\right)L_4 \cdot L_4 + \left(4 + \frac{1}{2}\right)L_5
$$

4

 $\frac{1}{2}$) $b_1(L_4)$ b_1 independent M5-strips in X_4 $[(N_{\text{flux}})]$ 2

[S. Lüst, Vafa, Wiesner, Xu '22]

The estimated UV CFT

• Count possible deformations of special Lagrangian L_4 in X_4

$$
c_{IR} \le c_{UV} \sim (N_{flux})^2
$$

$$
|\Lambda_{AdS}| \ge \mathcal{O}\left[\frac{1}{(N_{flux})^2}\right]
$$

M5 self-intersections in X_4 $\sim (N_{\text{flux}})^2$

 $Scale L_4 \rightarrow N_{\text{flux}} L_4$:

$$
c_{\rm UV} = \left(1 + \frac{1}{2}\right)L_4 \cdot L_4 + \left(4 + \frac{1}{2}\right)L_5
$$

4

 $\frac{1}{2}$) $b_1(L_4)$ b_1 independent M5-strips in X_4 $[(N_{\text{flux}})]$ 2

[S. Lüst, Vafa, Wiesner, Xu '22]

 $c_{\text{IR}} \leq c_{\text{UV}} \sim (N_{\text{flux}})$ $|\Lambda_{AdS}| \ge$ ² ⇒ [1 $(N_{\text{flux}})^2$ Need it exponentially small

The estimated UV CFT

• Count possible deformations of special Lagrangian L_4 in X_4

 Not enough d.o.f. on the brane to get a sufficiently small C.C.!

Pause for questions (4)

Part 2 *Anatomy of a Flaw*

A flaw in the argument?

- They take a DW sourcing the KKLT AdS, and the UV d.o.f. are the deformations of the SLag L_4 .
- What if there are hidden d.o.f.?
	-
	- ‣ At the M5-M5 brane intersections there could have much more d.o.f. \cdot (D1-D5 system: central charge is N_1N_5 instead of $N_1 + N_5$.) ‣ Here: potentially d.o.f. from M2 branes ending on M5 branes
	-

A flaw in the argument?

- They take a DW sourcing the KKLT AdS, and the UV d.o.f. are the deformations of the SLag L_4 .
- What if there are hidden d.o.f.?
	-
	- ‣ At the M5-M5 brane intersections there could have much more d.o.f. \cdot (D1-D5 system: central charge is N_1N_5 instead of $N_1 + N_5$.) ‣ Here: potentially d.o.f. from M2 branes ending on M5 branes
	-

 \rightarrow Need to evaluate the radius of the AdS corresponding to the brane intersection!

Taking into account the M2 branes for $c_{\rm UV}$ S TO

• Brane configuration: $M5(1234,y) - M5(5678,y) - M2(yz)$.

Taking into account the M2 branes for $c_{\rm UV}$ S TO

• Brane configuration: $M5(1234,y) - M5(5678,y) - M2(yz)$.

• Put M2 charge ending on M5 branes (cross shape). • Smear M5(1234,y) along z. Smear M5(5678,y) along z. • Take near-horizon limit \rightarrow central charge

We propose:

Branes at M5 self-intersections The September equation corresponds to M2 small corresponds to M2 small corresponds to M2 small corresponds to M cannot move in the 6789 space. So in the end there is not more moduli due to the presence t M5 calt The more supersymmetry one breaks, the more degeneracy (and entropy, when it We can also determine the central charge of such a M2-M5-M5 system by going to anes at ivio seil-intersections the set M5 calf-intercections 7 + 1 + dx2 + d Foreign and the state of t −1 , F2m3 ,

• There is a sugra solution corresponding to the smeared M5-M5- $\overline{\hspace{1cm}}_{\rm M5}$ M2. δ H ₂
H2² where ^I runs over all ^m [∈] {3, ⁴, ⁵, ⁶} and ^m′ [∈] {7, ⁸, ⁹, ¹⁰}. ^H(1) \mathcal{G} to the sincered individually transverse directions of $\mathbb{M}5_2 \otimes \sim$

> ds^2 $\mathbf{3} \times \mathbf{4}$

*^r*² (5.2) $\frac{\sigma_F}{r^2}$) and H(2) and r^2 , \sim (2.2) $\frac{z_1}{r^2}$

- (Localised) M5 harmonic functions: \overline{P}
- M2-charge function:

ا –
ا *H*(1) *^F ^H*(2)

⇣ $[5, 99]$

$$
ds^{2} = H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{-1/3} \left(-dt^{2} + dx_{1}^{2} \right) + H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{2/3} dx_{2}^{2}
$$

\n
$$
+ H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{-1/3} \left(H_{F}^{(2)} \right)^{2/3} \left(dr^{2} + r^{2} d\Omega_{(1)}^{2} \right)
$$

\n
$$
+ H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{2/3} \left(H_{F}^{(2)} \right)^{-1/3} \left(dr^{2} + r^{2} d\Omega_{(2)}^{2} \right) .
$$

\n
$$
= 1 \qquad \qquad (1) \qquad Q_{F}^{1} \qquad \qquad (2) \qquad Q_{F}^{2}
$$

• Metric Ansatz:

functions:

\n
$$
H_F^{(1)} = 1 + \frac{Q_F^1}{r'^2}, \qquad H_F^{(2)} = 1 + \frac{Q_F^2}{r^2}
$$

$$
H_T = (1 + \frac{Q_T^{(1)}}{r'^2})(1 + \frac{Q_T^{(2)}}{r^2})
$$

Ede Boer, Pasquinucci, Skenderis '99].
In the Boer, Pasquinucci, Skenderis '99].

⌘1*/*³

The near-horizon limit

[de Boer, Pasquinucci, Skenderis '99]

• Near-horizon limit:

y	z	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	\sim	$r' = 0$
$M5_2$	\otimes	\sim	\otimes
$M2_1$	\otimes	\sim	\otimes
$M2_1$	\otimes	\sim	\bullet
$M2_2$	\otimes	\otimes	\bullet

$$
(\zeta,\lambda)
$$

 $\frac{10}{5}$, $\frac{10}{5}$,

The near-horizon limit

• Central charge: *c* ∝ *N*2*N*⁵ ∝ (*N*flux) $N₅ \propto (N_{flux})^3$ $H_4 = 1 \int_{\mathcal{C}} \Delta \mathcal{L}$ -24 -21 -41 that Used $N_2 =$ χ (X_4) 24 = 1 $\frac{1}{2}$ $G_4 \wedge G_4$

[de Boer, Pasquinucci, Skenderis '99]

• Near-horizon limit:

y	z	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$	
$M5_1$	\otimes	\sim	$r' = 0$	
$M5_2$	\otimes	\sim	\otimes	
$M2_1$	\otimes	\sim	\otimes	
$M2_1$	\otimes	\sim	$r' = 0$	
$M2_2$	\otimes	\otimes	\sim	\bullet

$$
(\lambda,\lambda)
$$

$\frac{10}{5}$, $\frac{10}{5}$,

The near-horizon limit

• Central charge: *c* ∝ *N*2*N*⁵ ∝ (*N*flux) $H_4 = 1 \int_{\mathcal{C}} \Delta \mathcal{L}$ -24 -21 -41 that Used $N_2 =$ χ (X_4) 24 = 1 $\frac{1}{2}$ $G_4 \wedge G_4$

[de Boer, Pasquinucci, Skenderis '99]

• Near-horizon limit:

y	z	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$	
$M5_1$	\otimes	\sim	$r' = 0$	
$M5_2$	\otimes	\sim	\otimes	
$M2_1$	\otimes	\sim	\otimes	
$M2_1$	\otimes	\sim	$r' = 0$	
$M2_2$	\otimes	\otimes	\sim	\bullet

$$
, \lambda)
$$

$N_{\rm F} \propto (N_{\rm flux})^3 > (N_{\rm flux})^2$ \rightarrow Weaker bo \rightarrow Weaker bound on Λ due ✓ 1 THE MEDICINES to the M2 branes!

^x [S. Lüst, Vafa, Wiesner, Xu '22]

$$
> (N_{\text{flux}})^2
$$

Pause for questions (5)

Part 3 *Anatomy of a Flow*

The most « entropic » domain wall I VV

-
- Configuration with the most d.o.f.?
- Squeeze all branes at the same place \rightarrow brane interaction enhanced

• Previous section: compare AdS_3 with AdS_3 , but smeared the M5 branes. 3 WILLI \sim U \sim $3'$

e interaction enhanced

The most « entropic » domain wall I VV

-
- Configuration with the most d.o.f.?
- Squeeze all branes at the same place \rightarrow brane interaction enhanced

These configurations contain the maximum number of d.o.f. one can get from the branes

• Previous section: compare AdS_3 with AdS_3 , but smeared the M5 branes. 3 WILLI \sim U \sim $3'$

e interaction enhanced

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- . The M2 pulls on the worldvolume of the M5

[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL'23]

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5

Ads • Sugra solution, with infrared limit: $AdS_3 \times S^3 \times S^3 \times_w W_2$

Hourings, *vvaritet* [Lunin '07] [Bachas, D'Hoker, Estes, Krym '13] [Bena, Houppe, Toulikas, Warner '23]

[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

• Reading off central charge is a mess

• Sugra solution for D5-NS5-D3 intersection is known.

• The solution is an $AdS_4 \times S^2 \times S^2 \times W^2$

Warped AdS₄ in type IIB

Warped AdS_4 in type IIB

- The solution is an AdS $_4 \times S^2 \times S^2 \times_w \Sigma_2$
- Compute of AdS radius in 4d Planck units:

$$
\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})
$$

[Karch, Sun, Uhlemann '22]

Warped AdS_4 in type IIB

- Study DW configurations for KKLT
	- ‣ Assume scale-separated KKLT AdS exists
	- ‣ Realise it as being sourced by a DW made of M5 or D5/NS5 branes
	- ‣ *c*-theorem puts lower bound on |Λ|

M5-brane on SLag4 dual to G_4

- Study DW configurations for KKLT
	- ‣ Assume scale-separated KKLT AdS exists
	- ‣ Realise it as being sourced by a DW made of M5 or D5/NS5 branes
	- **►** c-theorem puts lower bound on $|Λ|$
- Previously proposed to count the UV central charge possible deformation of the SLag wrapped by the M5 branes
- Flaw in the argument: could have *hidden d.o.f.*

[S. Lüst, Vafa, Wiesner, Xu '22]

M5-brane on SLag4 dual to G

 $c_{\text{IR}} \leq c_{\text{UV}} \sim (N_{\text{flux}})^2$

• The intuition was right, there can be indeed more d.o.f. than originally thought

• They correspond to Hanany-Witten-like d.o.f. at the five-brane intersections.

$$
F \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})
$$

- They correspond to Hanany-Witten-like d.o.f. at the five-brane intersections.
- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with $|\Lambda| \ll 1$ in the KKLT scenario.

$$
F \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})
$$

• The intuition was right, there can be indeed more d.o.f. than originally thought

- They correspond to Hanany-Witten-like d.o.f. at the five-brane intersections.
- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with |Λ| ≪ 1 in the KKLT scenario.

$$
F \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})
$$

• The intuition was right, there can be indeed more d.o.f. than originally thought