Holography for KKLT: Anatomy of a Flow

Theoretical Elementary Particle Physics Group Seminar, Nagoya

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Work to appear with I. Bena and S. Lüst

July 2nd, 2024

Yixuan Li

MPI Munich

- To describe our Universe, we want a unified framework comprising: Standard model of particle physics
 - Mechanism for expanding Universe

The string landscape

String theory's paradigm to get real-world physics: compactifications

 $\mathcal{M}_4 \times X_6$

• To explain our 4d EFT, start from a 10d theory

The string landscape

- String theory's paradigm to get real-world physics: compactifications
- To explain our 4d EFT, start from a 10d theory
- The higher-dimensional theory is very rich: \rightarrow CY geometry can be very intricate ' \rightarrow 10d field content on top \rightarrow induce fluxes on the CY

 $\mathcal{M}_4 \times X_6$

 10^{500} solutions

[Ashok, Douglas '04]

 \rightarrow surely one can get any EFT from those!

• The space of 4d EFT compatible with quantum gravity is very constrained → « Swampland programme »

- The space of 4d EFT compatible with quantum gravity is very constrained → « Swampland programme »
- Scale separation (size compact dimensions VS non-compact ones) not easily achieved
 - String theory examples (AdS₅ \times S⁵,...)

- The space of 4d EFT compatible with quantum gravity is very constrained → « Swampland programme »
- Scale separation (size compact dimensions VS non-compact ones) not easily achieved
 - String theory examples (AdS₅ \times S⁵,...)

- The space of 4d EFT compatible with quantum gravity is very constrained → « Swampland programme »
- Scale separation (size compact dimensions VS non-compact ones) not easily achieved
 - String theory examples (AdS₅ × S^5 ,...)

Conjecture: No scale-separated AdS vacua [D. Lüst, Palti, Vafa '19]

As $\Lambda \rightarrow 0$, \exists tower of states s.t. $m \sim |\Lambda|^{\alpha}$

- The space of 4d EFT compatible with quantum gravity is very constrained → « Swampland programme »
- Scale separation (size compact dimensions VS non-compact ones) not easily achieved
 - String theory examples (AdS₅ × S^5 ,...)

Conjecture: No scale-separated AdS vacua [D. Lüst, Palti, Vafa '19]

As $\Lambda \rightarrow 0$, \exists tower of states s.t. $m \sim |\Lambda|^{\alpha}$

EFT p.o.v.: more and more particles below the cutoff \rightarrow EFT breaks down!

Challenge 2: de Sitter in string theory

- Cosmological constant = minimum of a scalar potential, $V(\phi^i)$
- Positive, zero, negative $\Lambda \rightarrow d\text{S},$ Mink., AdS.

Challenge 2: de Sitter in string theory

- Cosmological constant = minimum of a scalar potential, $V(\phi^i)$
- Positive, zero, negative $\Lambda \rightarrow d\text{S},$ Mink., AdS.
- Very difficult to get positive CC.

Challenge 2: de Sitter in string theory

- Cosmological constant = minimum of a scalar potential, $V(\phi^i)$
- Positive, zero, negative $\Lambda \rightarrow dS$, Mink., AdS.
- Very difficult to get positive CC.

[Kachru, Kallosh, Linde, Trivedi '03]

Candidate mechanism:

KKLT scenario

Aim of this talk: Study KKLT through holography

1. Explain what I mean by « studying KKLT through holography »

2. More classic « stringy » seminar

Pause for questions (1)

- Electron \rightarrow electric field $A_{\mu} \rightarrow$ field strength $F_{\mu\nu}$ (dynamical part)
- Electron in $\mathbb{R}^3 \rightarrow \text{flux lines} \rightarrow \text{Gauss' law}$ gives electric charge

What are fluxes?

What are fluxes?

- Electron \rightarrow electric field $A_{\mu} \rightarrow$ field strength $F_{\mu\nu}$ (dynamical part)
- Electron in $\mathbb{R}^3 \rightarrow \text{flux lines} \rightarrow \text{Gauss' law}$ gives electric charge
- Electron on compact space \rightarrow impossible!
 - But $F_{\mu\nu} = n \in \mathbb{Z}$ allowed by topology.

What are fluxes?

- Electron \rightarrow electric field $A_{\mu} \rightarrow$ field strength $F_{\mu\nu}$ (dynamical part)
- Electron in $\mathbb{R}^3 \rightarrow \text{flux lines} \rightarrow \text{Gauss' law}$ gives electric charge
- Electron on compact space \rightarrow impossible!
 - But $F_{\mu\nu} = n \in \mathbb{Z}$ allowed by topology.

In string theory: string, Dp-branes $\rightarrow B_2, C_{p+1} \rightarrow H_3, F_{p+2}$.

 H_3, F_{p+2} have a constant part allowed by topology of compact space

 $\rightarrow \ll Fluxes \gg$

From 10d to scalar potential

- How do we get the scalar potential from string theory?
- EFT describing low-energy dynamics: 4d $\mathcal{N}=1$ SUSY

$$S_{\mathcal{N}=1} = \int d^4x \sqrt{-g} \left[\frac{R}{2} - g_{i\bar{j}} \partial \psi^i \partial \overline{\psi}^{\bar{j}} + V(\psi^i) + \dots \right]$$

From 10d to scalar potential

- How do we get the scalar potential from string theory?
- EFT describing low-energy dynamics: 4d $\mathcal{N}=1$ SUSY

$$S_{\mathcal{N}=1} = \int d^4 x \sqrt{-g} \left[\frac{R}{2} - g_{i\bar{j}} \partial \psi^i \partial \overline{\psi}^{\bar{j}} + V \right]$$

• V depends on 10d string-theory data $V = e^{K} \left[g^{i\bar{j}} D_{i} W \overline{D}_{\bar{j}} \overline{W} - 3 |W|^{2} \right]$

$$W_{\rm GVW} = \int_{CY_3} G_3 \wedge \Omega_3$$

Fluxes on CY CY geometry

 $(\psi^i) + \dots$

Stabilise CY moduli with 1. fluxes & non-perturbative corrections \rightarrow SUSY, scale-separated AdS $\Lambda < 0$

Stabilise CY moduli with 1. fluxes & non-perturbative corrections \rightarrow SUSY, scale-separated AdS $\Lambda < 0$

Stabilise CY moduli with 1. fluxes & non-perturbative corrections \rightarrow SUSY, scale-separated AdS $\Lambda < 0$

« Use solution of challenge 1 to solve challenge 2 »

Study this step through holography and domain walls

Pause for questions (2)

Domain walls as intersecting branes

• Can realise BH and DW solutions from *intersecting BPS branes*:

	t
brane 1	
brane 2	

common directions

overall transverse directions

Domain walls as intersecting branes

• Can realise BH and DW solutions from *intersecting BPS branes*:

	t	\vec{w}	\vec{x}	\vec{y}	\vec{z}
brane 1					
brane 2					

[Papadopoulos, Townsend '96]

[Gauntlett, Kastor, Traschen '96]

delocalise

« Harmonic function rule »

[Tseytlin '96]

 \Rightarrow

Sugra solution: BH or DW

Domain walls as intersecting branes

	t	\vec{w}	\vec{x}	\vec{y}	\vec{z}
brane 1					
brane 2					

Black hole if dim $(\vec{z}) \ge 2$

 $AdS \times S \times X$ « near-horizon »

4d « MSW » black hole: [Maldacena, Strominger, Witten '97]

M5 brane wrapping S_y^1 and L_4 $\subset CY_3$

Fluxes/branes for black holes

	0	\mathbb{R}^3	S_y^1	1	2	3	4	5	6
M5	_	$ \begin{array}{c c} r=0 \\ \bullet \end{array} $	_	_	_	_	_		
M5		$ \overset{r=0}{\bullet} $	_			_	_		
M5		$ \overset{r=0}{\bullet} $	_						
Р		$ \overset{r=0}{\bullet} $	\rightarrow						

The zoom-in of the branes at the triple intersections

Fluxes/branes for black holes

4d « MSW » black hole: [Maldacena, Strominger, Witten '97]

M5 brane wrapping S_y^1 and L_4 $\subset CY_3$

 Moduli / CY shape are stabilised near horizon:

$$t^{i} = p^{i} \sqrt{\frac{q}{\frac{1}{6}C_{ijk}p^{i}p^{j}p^{k}}} \qquad \gamma$$

		0	\mathbb{R}^3	S_y^1	1	2	3	4	5	6
•	M5		$\stackrel{r=0}{\bullet}$					_		
p^{ι}	M5		$\stackrel{r=0}{\bullet}$				_		_	
	M5	_	$\stackrel{r=0}{\bullet}$			_			_	
q	Р		r=0	\rightarrow						

The zoom-in of the branes at the triple intersections

11d: stabilisation from fluxes on CY

11d: competition between branes

Fluxes/branes for black holes

4d « MSW » black hole: [Maldacena, Strominger, Witten '97]

M5 brane wrapping S_v^1 and L_4 $\subset CY_3$

 Moduli / CY shape are stabilised near horizon:

$$t^i = p^i \sqrt{\frac{q}{\frac{1}{6}C_{ijk}p^i p^j p^k}}$$

		0	\mathbb{R}^3	S_y^1	1	2	3	4	5	6
•	M5		r=0							
p^{ι}	M5	_	$\stackrel{r=0}{\bullet}$	_			_	_	_	_
	M5		r=0							
q	Р		r=0	\rightarrow						

The zoom-in of the branes at the triple intersections

11d: stabilisation from fluxes on CY

11d: competition between branes

11d: triple intersections $c_L = C_{ijk} p^i p^j p^k + c_{2,i} p^i$

Number d.o.f. \leftrightarrow AdS₂ radius in 4d units

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

$$W_{\rm GVW} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$
$$W_{\rm n.p.} = \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}$$
need to be $\ll 1$

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections
- Get C.C. in terms of stabilised Kähler modulus σ_0

$$W_{\rm GVW} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$
$$W_{\rm n.p.} = \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}$$
$$\text{need to be } \ll 1$$
$$\Lambda_{\rm AdS} = -3 \left(e^K |W|^2 \right) \Big|_{D_a W=0} = -\frac{a^2 \mathscr{A}^2 e^{-2a\sigma_0}}{6\sigma_0} < 0$$

$$\Rightarrow |\Lambda_{AdS}| \ll 1$$

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections
- Get C.C. in terms of stabilised Kähler modulus σ_0

Idea: trade (F_3 , H_3) fluxes with D5/NS5 branes on dual cycles

$$W_{\rm GVW} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$
$$W_{\rm n.p.} = \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}$$
$$\boxed{\text{need to be } \ll 1}$$
$$\Lambda_{\rm AdS} = -3 \left(e^K |W|^2 \right) \Big|_{D_a W=0} = -\frac{a^2 \mathscr{A}^2 e^{-2a\sigma_0}}{6\sigma_0} < \infty$$

$$\Rightarrow |\Lambda_{AdS}| \ll 1$$

Pause for questions (3)

• Same story in dual version of KKLT in M theory on CY₄

• Same kind of superpotential, controlled by self-dual flux G_4

3d version of KKLT

 $X_4 = (X_3 \times T^2) / \mathbb{Z}_2$

 \mathcal{T}

$$W = \int_{X_4} \Omega_4 \wedge G_4 + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_4) \ e^{-2\pi k^{\alpha} T_{\alpha}}$$
$$G_4 = F_3 \wedge a + H_3 \wedge b$$

 Same story in dual version of KKLT in M theory on CY₄

 Same kind of superpotential, controlled by self-dual flux G_4

• Get scale-separated AdS₃

Idea: trade G_4 flux for M5 **branes** on dual cycle $L_4 \subset CY_4$.

3d version of KKLT

 $X_4 = (X_3 \times T^2) / \mathbb{Z}_2$

 \mathcal{T}

$$W = \int_{X_4} \Omega_4 \wedge G_4 + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_4) \ e^{-2\pi k^{\alpha} T_{\alpha}}$$
$$G_4 = F_3 \wedge a + H_3 \wedge b$$

$$\frac{1}{l_{AdS_3}^2} = -4e^K |W|^2 \Big|_{D_a W=0} \ll 1$$

Part 1 Anatomy of a Fall?

The Fall of KKLT?

<u>Claim</u>: cannot construct AdS₃ (with X_4 stabilised) with $|\Lambda| \ll 1$.

[S. Lüst, Vafa, Wiesner, Xu '22]

The Fall of KKLT?

- $G_4 = \star G_4$, so locally looks like

	0	y	z	1	2	3	4	5	6	7	8
M5			$\overset{z=0}{\bullet}$			_					
M5			$\overset{z=0}{\bullet}$							_	_

• On CY₄ X_4 : trade the G_4 flux for M5 branes on orthogonal cycle $L_4 \subset X_4$.

The Fall of KKLT?

- $G_4 = \star G_4$, so locally looks like

	0	y	z	1	2	3	4	5	6	7	8
M5			$\overset{z=0}{\bullet}$			_					
M5			$\overset{z=0}{\bullet}$							_	_

• 3d: KKLT AdS₃ as sourced by a domain wall

$$ds^{2} = e^{2D(z)}(-dt^{2} + dy^{2}) + dz^{2}$$

$$\frac{dD}{dz} = -\zeta |Z| \qquad \frac{d\phi^{a}}{dz} = 2\zeta g^{a\bar{b}}\partial_{\bar{b}}|Z$$

$$\int tension of the wall$$

• On CY₄ X_4 : trade the G_4 flux for M5 branes on orthogonal cycle $L_4 \subset X_4$.

At $z = +\infty$, reach KKLT AdS₃

 $|Z|^2 \sim \Delta \langle V \rangle$

Domain-wall holography

Space-time filling M2-branes

$$N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0$$

Domain wall M5-brane on SLag4 dual to G_4

z = 0

[S. Lüst, Vafa, Wiesner, Xu '22]

 $N_{M2} = 0, \qquad \frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$

Susy AdS₃ from M-theory on X_4 in the presence of self-dual G_4 flux

DW = 0 Z

Susy AdS vacuum

Domain-wall holography

Space-time filling M2-branes

$$N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0$$

$$\frac{\chi(X_4)}{24} = N_{\rm M2} + \frac{1}{2} \int G_4 \wedge G_4$$

Domain wall M5-brane on SLag4 dual to G_4

z = 0

DW: M5 brane on special Lagrangian L_4

[S. Lüst, Vafa, Wiesner, Xu '22]

 $N_{M2} = 0$, $\frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$

Susy AdS₃ from M-theory on X_4 in the presence of self-dual G_4 flux

Susy AdS vacuum DW = 0 Z

 $\frac{\chi(X_4)}{24} = N_{\rm N2} + \frac{1}{2} \left[G_4 \wedge G_4 \right]$

Domain-wall holography

Space-time filling M2-branes

$$N_{M2} = \frac{x}{24}, \quad G_4 = 0$$

$$N_{M2} = 0, \quad \frac{1}{2} \int G_4 \wedge G_4 = \frac{x}{24}$$
Susy AdS₃ from M-theory
on X₄ in the presence of
self-dual G₄ flux
$$\sum_{z=0}^{z=0} DW = 0$$

$$DW = 0$$

$$\sum_{z=0}^{z=0} DW = 0$$

$$\frac{\chi(X_4)}{24} = N_{\rm M2} + \frac{1}{2} \int G_4 \wedge G_4$$

DW: M5 Lag [S. Lüst, Vafa, Wiesner, Xu '22]

The holographic dual [S. Lüst, Vafa, Wiesner, Xu '22] At $z = +\infty$, the IR central charge $N_{M2} = 0, \qquad \frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$ measures the radius of the AdS₃: $c_{\rm IR} = \frac{3}{2} l_{\rm AdS} \sim \frac{1}{|\Lambda|}$ Susy AdS vacuum DW = 0 Z

M5-brane on SLag4 dual to G_4

M5-brane on SLag4 dual to G_4

At z = 0, the UV central charge measures the number of d.o.f. on the M5 branes.

At z = 0, the UV central charge measures the number of d.o.f. on the M5 branes.

The estimated UV CFT

• Count possible deformations of special Lagrangian L_4 in X_4

$$c_{\rm UV} = \left(1 + \frac{1}{2}\right)L$$

 $= \left(1 + \frac{1}{2}\right) L_4 \cdot L_4 + \left(4 + \frac{4}{2}\right) b_1(L_4)$ M5 self-intersections b_1 independent M5-strips in X_4 in X_4

[S. Lüst, Vafa, Wiesner, Xu '22]

The estimated UV CFT

• Count possible deformations of special Lagrangian L_4 in X_4

$$c_{\rm UV} = \left(1 + \frac{1}{2}\right)L$$

in X_4 $\sim (N_{\rm flux})^2$

Scale $L_4 \rightarrow N_{\text{flux}} L_4$:

 $c_{\rm IR} \leq c_{\rm UV} \sim (N_{\rm flux})^2$ $|\Lambda_{\rm AdS}| \geq \mathcal{O}\left[\frac{1}{(N_{\rm flux})^2}\right]$

[S. Lüst, Vafa, Wiesner, Xu '22]

 $= \left(1 + \frac{1}{2}\right) L_4 \cdot L_4 + \left(4 + \frac{4}{2}\right) b_1(L_4)$ M5 self-intersections b_1 independent M5-strips in X_4 $\mathcal{O}[(N_{\rm flux})^2]$

The estimated UV CFT

• Count possible deformations of special Lagrangian L_4 in X_4

$$c_{\rm UV} = \left(1 + \frac{1}{2}\right)L$$

M5 self-intersections in X_4 $\sim (N_{\rm flux})^2$

Scale $L_4 \rightarrow N_{\text{flux}} L_4$:

 $c_{\rm IR} \leq c_{\rm UV} \sim (N_{\rm flux})^2$ Need it exponentially $|\Lambda_{AdS}| \geq$ $(N_{\rm flux})^2$ small

[S. Lüst, Vafa, Wiesner, Xu '22]

 $L_4 \cdot L_4 + \left(4 + \frac{4}{2}\right) b_1(L_4)$ b_1 independent M5-strips in X_4 $\mathcal{O}[(N_{\rm flux})^2]$

> ⇒ Not enough d.o.f. on the brane to get a sufficiently small C.C.!

Pause for questions (4)

Part 2 Anatomy of a Flaw

A flaw in the argument?

- They take a DW sourcing the KKLT AdS, and the UV d.o.f. are the deformations of the SLag L_4 .
- What if there are hidden d.o.f.?

 - At the M5-M5 brane intersections there could have much more d.o.f. • (D1-D5 system: central charge is N_1N_5 instead of $N_1 + N_5$.) Here: potentially d.o.f. from M2 branes ending on M5 branes

A flaw in the argument?

- They take a DW sourcing the KKLT AdS, and the UV d.o.f. are the deformations of the SLag L_4 .
- What if there are hidden d.o.f.?

 - At the M5-M5 brane intersections there could have much more d.o.f. • (D1-D5 system: central charge is N_1N_5 instead of $N_1 + N_5$.) Here: potentially d.o.f. from M2 branes ending on M5 branes

 \rightarrow Need to evaluate the radius of the AdS corresponding to the brane intersection!

Taking into account the M2 branes for c_{UV}

• Brane configuration: M5(1234,y) – M5(5678,y) – M2(yz).

	0	y	z	1	2	3	4	5	6	7	8
M5			z=0	_	_	_	_				
M5									_	_	_
M2											

Taking into account the M2 branes for c_{IIV}

• Brane configuration: M5(1234,y) – M5(5678,y) – M2(yz).

	0	y	z	1	2	3	4	5	6	7	8
M5	_	_	z=0	_	_		_				
M5		_							_		
M2											

We propose:

 Put M2 charge ending on M5 branes (cross shape). • Smear M5(1234,y) along z. Smear M5(5678,y) along z. Take near-horizon limit → central charge

Branes at M5 self-intersections

• There is a sugra solution corresponding to the smeared M5-M5-M2. [de Boer, Pasquinucci, Skenderis '99]

 ds^2

• Metric Ansatz:

- (Localised) M5 harmonic functions:
- M2-charge function:

	y	\mathcal{Z}	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	2	\otimes	r'=0
$M5_2$	\otimes	2	$\stackrel{r=0}{\bullet}$	\otimes
$M2_1$	\otimes	\otimes	\sim	r'=0
$M2_2$	\otimes	\otimes	r=0	\sim

$$\begin{split} & = H_T^{-2/3} \left(H_F^{(1)} H_F^{(2)} \right)^{-1/3} \left(-dt^2 + dx_1^2 \right) + H_T^{-2/3} \left(H_F^{(1)} H_F^{(2)} \right)^{2/3} dx_2^2 \\ & + H_T^{1/3} \left(H_F^{(1)} \right)^{-1/3} \left(H_F^{(2)} \right)^{2/3} \left(dr^2 + r^2 d\Omega_{(1)}^2 \right) \\ & + H_T^{1/3} \left(H_F^{(1)} \right)^{2/3} \left(H_F^{(2)} \right)^{-1/3} \left(dr'^2 + r'^2 d\Omega_{(2)}^2 \right) \,. \end{split}$$

$$H_F^{(1)} = 1 + \frac{Q_F^1}{r'^2}, \qquad H_F^{(2)} = 1 + \frac{Q_F^2}{r^2}$$

$$H_T = \left(1 + \frac{Q_T^{(1)}}{r'^2}\right)\left(1 + \frac{Q_T^{(2)}}{r^2}\right)$$

[de Boer, Pasquinucci, Skenderis '99]

The near-horizon limit

• Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]

$$y$$
 z $(r, \Omega_3^{(1)})$ $(r', \Omega_3^{(2)})$ $M5_1$ \otimes \sim \otimes $r'=0$ $M5_2$ \otimes \sim \bullet \otimes $M2_1$ \otimes \otimes \sim $r'=0$ $M2_2$ \otimes \otimes \bullet \sim

$$(\lambda)$$

The near-horizon limit

• Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]

Used $N_2 = \frac{\chi(X_4)}{24} = \frac{1}{2} \int G_4 \wedge G_4$ • Central charge: $c \propto N_2 N_5 \propto (N_{\text{flux}})^3$

$$y$$
 z $(r, \Omega_3^{(1)})$ $(r', \Omega_3^{(2)})$ $M5_1$ \otimes \sim \otimes $r'=0$ $M5_2$ \otimes \sim \bullet \otimes $M2_1$ \otimes \otimes \sim $r'=0$ $M2_2$ \otimes \otimes \bullet \sim

$$(z, \lambda)$$

The near-horizon limit

• Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]

Used $N_2 = \frac{\chi(X_4)}{24} = \frac{1}{2} \int G_4 \wedge G_4$ • Central charge: $c \propto N_2 N_5 \propto (N_{\text{flux}})^3$

[S. Lüst, Vafa, Wiesner, Xu '22]

$$(\lambda)$$

$$> (N_{\rm flux})^2$$

\rightarrow Weaker bound on Λ due to the M2 branes!

Pause for questions (5)

Part 3 Anatomy of a Flow

The most « entropic » domain wall

- Configuration with the most d.o.f.?
- Squeeze all branes at the same place \rightarrow brane interaction enhanced

• Previous section: compare AdS_3 with AdS_3 , but smeared the M5 branes.

The most « entropic » domain wall

- Configuration with the most d.o.f.?
- Squeeze all branes at the same place \rightarrow brane interaction enhanced

• Previous section: compare AdS_3 with AdS_3 , but smeared the M5 branes.

These configurations contain the maximum number of d.o.f. one can get from the branes

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5

[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5

[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

 Sugra solution, with infrared limit: $AdS_3 \times S^3 \times S^3 \times_w W_2$

[Bachas, D'Hoker, Estes, Krym '13] [Lunin '07] [Bena, Houppe, Toulikas, Warner '23]

• Reading off central charge is a mess

Sugra solution for D5-NS5-D3 intersection is known.

• The solution is an $AdS_4 \times S^2 \times S^2 \times_w \Sigma_2$

Warped AdS₄ in type IIB

Warped AdS_4 in type IIB

Sugra solution for D5-NS5-D3 intersection is known.

- The solution is an $AdS_4 \times S^2 \times S^2 \times_w \Sigma_2$
- Compute of AdS radius in 4d Planck units:

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^4 \log(N_{\rm flux})$$

[Assel, Estes, Yamazaki '12]

Warped AdS₄ in type IIB

Matches the free energy of the 3d CFT!

[Assel, Estes, Yamazaki '12]

[Karch, Sun, Uhlemann '22]

- Study DW configurations for KKLT
 - Assume scale-separated KKLT AdS exists
 - Realise it as being sourced by a DW made of M5 or D5/NS5 branes
 - *c*-theorem puts lower bound on $|\Lambda|$

M5-brane on SLag4 dual to G_4

- Study DW configurations for KKLT
 - Assume scale-separated KKLT AdS exists
 - Realise it as being sourced by a DW made of M5 or D5/NS5 branes
 - *c*-theorem puts lower bound on $|\Lambda|$
- Previously proposed to count the UV central charge possible deformation of the SLag wrapped by the M5 branes
- Flaw in the argument: could have hidden d.o.f.

Space-time filling M2-branes $N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0$ $N_{M2} = 0, \qquad \frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$ z = 0Domain wa

M5-brane on SLag4 dual to G

 $c_{\rm IR} \leq c_{\rm UV} \sim (N_{\rm flux})^2$

[S. Lüst, Vafa, Wiesner, Xu '22]

 The intuition was right, there can be indeed more d.o.f. than originally thought

$$F \sim (N_{\rm flux})^4 \log(N_{\rm flux})$$

• They correspond to Hanany-Witten-like d.o.f. at the five-brane intersections.

 The intuition was right, there can be indeed more d.o.f. than originally thought

$$F \sim (N_{\rm flux})^4 \log(N_{\rm flux})$$

- They correspond to Hanany-Witten-like d.o.f. at the five-brane intersections.
- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with $|\Lambda| \ll 1$ in the KKLT scenario.

 The intuition was right, there can be indeed more d.o.f. than originally thought

$$F \sim (N_{\rm flux})^4 \log(N_{\rm flux})$$

- They correspond to Hanany-Witten-like d.o.f. at the five-brane intersections.
- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with $|\Lambda| \ll 1$ in the KKLT scenario.

